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Outline
! Introduction

! Metal matrix composites (Ti-SiC and Al-Al2O3)

! Ceramic matrix composites (SiC-SiC)

! Metallic glass matrix composites

! Cracks in ferroelectrics

! Study of damage evolution in complex 
materials
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Fracture of a Fiber Composite under Tension

critical, 
localized 
deformation

break 
clustering 
and 
interaction

nucleation 
and 
distributed 
breaking

applied  
stress

strain

Complications

! Fabrication processes

! Inhomogeneous 
dislocation densities

! Changes in grain size

! Geometrical 
constraints

! Interface introduced 
with different 
properties

! Residual stresses
" Aim: prediction of strength and 

lifetime

" Need: “realistic” constitutive 
laws and quantitative damage 
characterization
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Deformation of a Multi-Fiber Composite

Infinitely large 
number of fibers

 
Fiber  
Breaks

Elastic 
Fibers

Regions of 
localized shear

 
Matrix 
Breaks

*  I.J. Beyerlein and C. M. Landis, 
Mechanics of Materials, 1999; 31: 331. 

# Shear lag model for 2-D 
fiber composites

# Accounts for matrix 
sustaining elastic tensile 
and shear stresses (first 
shear lag model to do so)

# Allows for multiple fiber and 
matrix breaks

# Computationally faster for 
many breaks

# Assumes elastic
deformation only

Critical Parameters:

• Location and 
morphology of cracks

• Crack opening 
displacement

• Size of plastic zone

• Debond size at the 
interface

• Strain concentrations 
near cracks and 
debonds

Matrix

Interface
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Motivation and Approach

$ Little information about deformation and constitutive behavior of 
materials at multiple length scales.

$ Need to link experimental data with rigorous micromechanics 
modeling.

$ Approach:  Use X-ray diffraction and imaging to investigate 
deformation in materials and complement it with modeling.

$ Critical issues:
! Need for model specimens

! “High selectivity” of diffraction

! Only elastic lattice strains are measured with diffraction

! Lack of “realistic” constitutive laws to calculate stress and interpret 
diffraction data
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Advantages of XRD
# Non-destructive.

# Ability to distinguish different 
phases.

# Can measure elastic strain and 
texture.

# Simultaneous strain and 
imaging capability.

# Multi-scale: nm to cm.

# Deep penetration.

# In-situ experiment capability.

⇒ Determination of in-situ
constitutive behavior
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Bragg’s law:
λ = 2dsinθ

Differences in lattice spacing 
⇒ Elastic lattice strain
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Ti 

SiC 

" Laminar composite:  Ideal for model comparison
" 140 µm in diameter fibers; 240 µm average center-to-

center distance
" 200 µm thick matrix
" Data collected with a digital image plate

Model Composite: Ti-6Al-4V / SiC (SCS-6)

Strain  
gage

Wg = 7 mm

Lg = 26 mm

σ

σ

Grip

Grip

Fibers

Matrix

Hole
Strain 
gage

C D E F G

$ Uniaxial tensile testing
$ Damage evolution study 

using XRD (65 keV)
$ Complete penetration
$ 90 x 90 µm2 spot size

X-ray 
beam

X-ray 
beam

tffiberfiber

A  B  C  A  B  C  D  ED  E

Crack



8

2θ
r

Bragg’s Law:
λ = 2 d sin θ

High Energy 2-D XRD Experimental Setup 

Diffractometer
Sample 
stage

Digital 
image 
plate
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Matrix Stiffness Shear Lag (MSSL) Model Predictions

(i)-intact matrix
(ii)-broken matrix

With ρ = 0.289 
for both one 
and two broken 
fibers 
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Unloading Strains in FibersFibers Compared to the MSSL Model

Left Side of the Damage Zone:
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Right Side of the Damage Zone:

σ

t

! Good fit with ‘intact matrix’ case.

! Unloading strains were used due to plasticity in matrix.

! Right hand side data suggest interface debonding.

J. C. Hanan, E. Üstündag et al, Acta Mater. 51 [14], 4237-4248 (2003). 

Ti-SiC
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Unloading Strains in the Matrix Compared to the MSSL Model

# Better fit with ‘intact matrix’ case.

# ρ = 0.290 appears to be a more realistic value.

# Matrix data comes from few grains.
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J. C. Hanan, E. Üstündag et al, Acta Mater. 51 [14], 4237-4248 (2003). 

Ti-SiC
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Matrix Strains using Image Plate
Axial Strain Map

Shear Strain Map

! Multi-axis strain data

! Significant strain concentrations in 
matrix

TransverseTransverse Strain Map
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Change in Matrix Axial Residual Strain due to 
Loading

# The compressive 
regions identify 
plastic
deformation 
while loading the 
composite
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SiC/SiC Composite: Microtomography

# Use of highly coherent X-ray 
beam (at APS).

# Contrast due to absorption 
and phase changes. 

# Resolution ~ 1 µm.
# Ideal for damage evolution 

studies in CMCs:
» Multi-dimensional strain 

information
» Identification of 

cracks/debonds

Special load frame for 
tomography

Future:  Combined diffraction and tomography

SiC matrix

SiC fiber

C core
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# National Synchrotron Light 
Source (BNL).

# Simultaneous diffraction, 
fluorescence and absorption.

# Microtopography provides 
information on the internal 
structure of composite:
! matrix uniformity
! interface integrity
! fiber structure

# Spot size 2-10 µm using 
capillary. 

# Transmission is available over 
a large range in θ.

22θθ
SlitsSlits

CompositeComposite
SampleSample

CapillaryCapillary

22θθ and and θθ
rotation axisrotation axis

yx
z

XX--Ray MicrotopographyRay Microtopography
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Transmission ProfileTransmission Profile

# θ = 0°, 2θ = 0°.

# Some small voids 
are visible.  The 
largest is located 
above the legend 
in the graph.

# The sample was 
fixed to the wafer 
on the opposite 
end of the sample 
from the one 
shown.  

Fiber
Al matrix
Si Wafer

VoidsVoids
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Radiograph of a Fiber BreakRadiograph of a Fiber Break

# Transmission 
reveals a 75 µm  
gap between the 
fibers.

# An in-situ 
measurement of a 
crack opening in a 
fractured fiber.

Broken fiber ends
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Bulk Metallic Glass Matrix CompositesBulk Metallic Glass Matrix Composites

$ Main problem with BMGs: 
catastrophic failure under 
unconstrained loading.

$ Main deformation mechanism is 
via shear bands (at room T).

$ Addition of reinforcements has 
been shown to increase 
damage tolerance and 
toughness.

$ Critical questions:
» What is the in-situ mechanical 

behavior of reinforcements?
» How do reinforcements interact 

with shear bands?
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Modeling shear bands in W-BMG 
composites

# BMG “yields” by multiple shear banding
# Slip initiates in W, transferred to BMG across interface
# Details of micromechanics?

WW--Fiber / BMGFiber / BMG--Matrix Composites:Matrix Composites:
Damage Evolution

Multiple shear bands in 40% W-BMG 
composite

W BMG W
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Slip

Connect Nucleate

““ββ PhasePhase”” / / BMG Composites:BMG Composites:
SEM InvestigationsSEM Investigations

$ Yielding initiates in dendrites.

$ Shear bands connect precipitates.

$ “Ideal” dendrite size and spacing?
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BMG Matrix Composites:  Present and Future Work

# Deformation fields in model monoliths and 
composites:

» Laser speckle interferometry (2-D)

» X-ray tomography (3-D)

» Imaging of shear bands

# 3-D FEM of deformation

BMG under bending Tomograph of BMG foam

Tomograph of W-BMG composite
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Ferroelectrics
# Grains within a polycrystal possess randomly oriented domains.

# Electrical poling is used to align a significant number of domains 
and produce a technologically viable ceramic material.

# Domain motion may be constrained by grain orientation and 
local boundary conditions.

# What are the details of inter-domain and inter-grain interactions?

Poling

Depoling

Poling

Depoling

Poling

Depoling
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Failure of Ferroelectrics

# Low fracture toughness (KIc ~ 1 MPa.m1/2)

# Indentation induced fracture mitigated by crystal poling 
direction; domain switching can impede crack propagation

# Domains interact with (and may induce) cracks

# 3-D morphology of cracks?

Indent

Cracks

50 µm

20 µm

Embedded 
electrodes

Cracks
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Conclusions and Future Directions

• X-ray imaging can revolutionize composites field

• Grand challenge:  to monitor damage evolution in a 
composite in real time

• Combined diffraction and imaging capability needed

• Spatial resolution required: ~1 µm (or less)

• Real time data analysis is a necessity

• New ancillary equipment must be developed

• X-ray energy should be tunable within a wide range
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metal/fiber composite 

Development of In-Situ Tomo-Diffraction

Goal:  develop x-ray microscopy on both real space and reciprocal space, to 
investigate the deformation and fracture mechanics in engineering materials.  

“Development of an In Situ X-ray Tomography-Diffraction Technique”,
Y. S. Chu, F. De Carlo, J. D. Almer and D. C. Mancini, SRI, 2001
“Novel X-ray Diffraction Technique for Strain Measurements Using Area Detector”,
Y. S. Chu, F. De Carlo, and D. C. Mancini,  Denver X-ray Conference, 2001

KB mirrorscrack

deformation
region

C
C

D
transmitted

CCD

diffracted

Strategy: dedicated comprehensive instrument development 

Ti (002)

SiC (111)

400µm


